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Abstract
On the grounds of Bloch equations modified by taking into account the
power dependence of the dispersion and damping parameters, we give general
expressions for hole shapes burnt in the absorption and polarization spectra
of the two-level systems. The general expressions are used for detailed
numerical calculations of the hole shapes and hole widths in a concrete
paramagnetic system (quartz with [AlO4]0 centres). This system earlier was
studied experimentally and theoretically through the transient nutation and free
induction decay methods. The results on the hole width in our modified-Bloch-
equations model are in good qualitative agreement with the FID data.

1. Introduction

The absorption lines of EPR transitionsω0 in solids are inhomogeneously broadened. Hence, a
monochromatic microwave field (pump field, saturation field)H(ωs, t) resonantly excites only
a small part of the spins within the inhomogeneously broadened spectral contour. As a result,
we have a variation in the population: in the vicinity of ω0 = ωs in the spectral distribution of
the lower level one has a decrease of the concentration n1(ω0); i.e. a spectral hole is developed
with the width approximately equal to the width of the saturated homogeneous absorption line.
An example of such a spectral hole burnt under steady-state excitation by an mw field with
Rabi frequency χ/2π = γH/2π = 5 kHz is shown in figure 1. Other conditions at which the
figure is obtained will be described below. Accordingly, in the spectral distribution of the upper
level one has an increase of the concentration n2(ω0): there appears a reverse hole. The small
height of the holes in the figure (see the inset) is caused by the smallness of the polarization
(n2 ≈ n1). On the other hand, the spectral polarization itself, p(ω0) ∼ n1(ω0)−n2(ω0), which
usually is of basic importance, has a sharp and deep minimum.

The information obtainable from the hole-burning studies is of the same kind as from the
transient nutations (TN) [1], free induction decay (FID) [2] and spin echoes [3]. In particular,
the half width at half maximum (or minimum) (HWHM) of the hole is approximately of the
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Figure 1. Hole burning in spectral distribution of spins at the ground level (n1(�)), reverse
hole burning at the excited level (n2(�)), and in the spectral distribution of the polarization
∝n1(�)−n2(�); χ/2π = 5 kHz. The top part of the figure is shown in the inset on a larger scale.

same order as the FID rate in the same system. Hence, hole burning and the transient effects
complement each other.

Theoretical description of TN, FID and spin echoes is usually based on the
phenomenological Bloch equations. In the reference frame rotating with frequency ωs , these
equations are

u̇+�v+
u

T2u
= 0 v̇−�u−χw+

v

T2v
= 0 ẇ+χv+

(w − w0)

T1
= 0.(1)

Ordinary Bloch equations (OBEs) (1) include two power-independent phenomenological
relaxation parameters, T1 and T2u = T2v = T2 = �−1

2 , power-independent tuning parameter
� = ω0 − ωs , and the induced Rabi frequency χ = γH , where γ is the gyromagnetic ratio.
For a two-level quantum system OBEs follow from the density-matrix equations of motion.
In particular, we have

u = ρ12 + ρ21 v = i(ρ21 − ρ12) w = ρ22 − ρ11 (2)

where ρij is the ij -matrix element of the density matrix.
Experiments [1–3] on transient EPR effects in solids and similar experiments in

optics [4–9] have shown, however, that OBEs fail in describing these effects. In particular,
contrary to the predictions of the OBE model it follows from [1–9] that observed decay rates
of the nutation, FID and echo responses are essentially intensity dependent. Based on these
results, a somewhat modified version of the Bloch equations (MBEs) has been proposed in a
recent paper [10] and used successfully to explain experimental results on TN [1] and FID [2].
In this paper we give, on MBE grounds, a theoretical description of the hole burning in the
absorption spectrum of a two-level system by steady-state excitation. As a specific example,
we perform detailed numerical calculations for sample no 1 of Boscaino and La Bella [2]
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in both MBE and OBE models. Results of the line-width calculations are compared with
observed [2] and calculated [10] FID rate data.

2. Modified Bloch equations

Hole burning can be examined, for example, through a scan of the inhomogeneous absorption
spectrum by a small probe field Hp(ωp, t). The absorption coefficient α(ωp) is given by

α(ωp) = 4πωp

c
Im χ(ωp) χ(ωp) = n0µ12ρ21(ωp)

Hp(ωp)

where ρ21(ωp) is the Fourier component of the nondiagonal matrix element of the density
matrix at frequency ωp. Hence, one has to obtain v(ωp) = 2Im ρ21(ωp) as a solution of the
corresponding Bloch equations.

Below we briefly summarize the main features of the MBE model [10]. In distinction to
OBEs, here tuning parameter � = �(χ) is power dependent; also, instead of a single constant
relaxation parameter T2 for transverse components one has power-dependent parameters
T2u(χ) [11] and T2v(χ) for u and v components respectively. For steady-state excitation,
the explicit form of �(χ), T2u(χ) and T2v(χ) is as follows:

�(χ) = �0 + ω + δω(χ)

δω(χ) = aωδMz = aω

∫ ∞

−∞
[w0 − w(�)]δn2(�) d� (3)

δn2(�) =
(n0

2
− n20

) S(�, χ)

1 + S(�, χ)
g(�) S(�, χ) = T1�2vχ

2

4�2 + �2
2v

(4)

�2u = �0

1 + r2χ2
+

1

2T1
(5)

�2v = �0

[
1 +

1

2T1�0

]
+ a�

∫
[u2(�) + v2(�)]1/2δn2(�) d�. (6)

In equations (3) ω = ω0 − ω00 measures the spectral distance of the generic spin (ω0) from
the central frequency of the inhomogeneously broadened line ω00; �0 = ω00 − ωs and for
centre excitation �0 = 0. Further, δω(χ) gives the intensity-dependent shift of the transition
frequency due to change in the z-component of the local magnetic field with parameter aω
proportional to demagnetizing coefficient N . It is assumed [1–3] that the inhomogeneously
broadened resonance line has a Gaussian profile with a standard deviation σ :

g(ω) = (2π)−1/2σ−1 exp(−ω2/2σ 2). (7)

The change in spectral concentration of the upper level δn2(�) = n2(�)−n20(�) is obtained
as the steady-state solution of the standard rate equation

ṅ2(�, t) = −(w21 + W21)n2(�, t) + (w12 + W12)n1(�, t)

n1(�, t) + n2(�, t) = n(�) = n0g(�) n1 + n2 = n0. (8)

Here w21 is the transition probability per second for a spin from excited level 2 to ground
level 1, w12 is the probability for the reverse process, W21 = 2πχ2gL(ω) and W12 are the
probabilities for induced transitions 1 ↔ 2 and gL(ω) is the usual Lorentzian profile. In
equation (4) S(�, χ) is the spectral saturation parameter. In (5) r is the parameter associated
with the correlation time of dipole–dipole interactions [11]. The first term on the right-hand
side of equation (6) describes the contribution to the damping from the thermally excited spins
and from the spin–lattice interaction; the last term is due to the coherently excited spins.
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Parameters �(χ) (3) and �2v (6) depend on u(t), v(t) and w(t), so the modified Bloch
equations are inherently nonlinear. Since required parameters δω(χ), �2v , δn2(�, t) and
variables u(t), v(t), w(t) are interrelated, we construct δn2(�), δω and �2v by the method of
iteration. In the zeroth approximation (k = 1), for u(t), v(t) and w(t) we use the well known
steady-state solution [12]

u(0) = �χw0T2uT2v

D
v(0) = −χw0T2v

D
w(0) = (1 + �2T2uT2v)w0

D

D = 1 + �2T2uT2v + χ2T1T2v (9)

where T2u = �−1
2u is given by (5), T2v = T2 and � = ω.

Solution (9) is used in equations (3), (4), (6) to obtain improved expressions for δn2(�),
δω and �2v; the latter are, in turn, inserted into equations (9) and so on. Really, the expressions
for δω and �2v get their final form after five cycles and do not vary further.

3. Hole burning

3.1. Theory

We start with the equation of motion for the density matrix

ih̄ρ̇ = [H ′, ρ] + ih̄

(
∂ρ

∂t

)
random(

∂ρnn′

∂t

)
random

= −�′ρnn′

(
∂ρnn

∂t

)
random

= − 1

T1
ρnn

H ′ = H ′
0 + H ′

int H ′
int = µ21(He−iωs t + hpe−iωpt + c.c.)

where H ′
0 is the unperturbed Hamiltonian of the two-level system with transition frequency

ω21 = −ω12 = ω0 = ω00 + ω + δω(χ). Damping parameter �′ can be expressed, using
equations (1) and (2), in terms of �2u and �2v (see equations (10) below).

Following the work of Bloembergen and Shen [13], we seek the steady-state solution
of this equation in the laboratory frame of coordinates. Since the interaction Hamiltonian
H ′

int = ∑
j H

′
int (ωj ) is a set of the Fourier components, the density matrix can be expanded

in the Fourier series as well: ρ = ∑
j ρ(ωj ). In the case of the steady-state excitation,

the differentiation at the left-hand side of the equation of motion for a component ρ(ωj ) ∼
exp(−iωj t) is reduced to multiplication by (−iωj). The coupled set of equations for the
Fourier components of the matrix elements ρ21(ωp), ρ12(ωp − 2ωs) and (ρ22 − ρ11)(ωp −ωs)
is

(ωp − ω0ÿ + i�+)ρ21(ωp) + i�−ρ12(ωp − 2ωs) − χ21(ρ22 − ρ11)(ωp − ωs)

= χp21(ρ22 − ρ11)
const

−2χ∗
12ρ21(ωp) + 2χ21ρ12(ωp − 2ωs) +

(
ωp − ωs

i

T1

)
(ρ22 − ρ11)(ωp − ωs)

= − 2χp21ρ12(−ωs)

i�−ρ21(ωp) + (ωp − 2ωs + ω0 + i�+)ρ12(ωp − 2ωs) + χ∗
12(ρ22 − ρ11)(ωp − ωs) = 0

χ21 = h̄−1µ21H χp21 = h̄−1µ21Hp. (10)

In distinction to [13], here ω0 is power dependent and by use of

�± = 1
2 (�2u ± �2v)

the difference of the relaxation parameters for u- and v-components is taken into account.
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Fourier components (ρ22 −ρ11)
const and ρ12(−ωs) in (10) are evaluated from the equation

of motion for the density matrix without considering the probe field and are given by

ρ12(−ωs) = Ds

Ds0
(ρ22 − ρ11)

const = Dc

Ds0

Ds = − i

T1
[iχ21�− + χ∗

12(ωs − ω0 + i�+)](ρ
0
22 − ρ0

11)

Dc = − i

T1
[(ωs − ω0)

2 + �2
+ + �2

−](ρ0
22 − ρ0

11)

Ds0 = − i

T1
[(ωs − ω0)

2 + �2
+ − �2

− + 4T1�+|χ |2 + 2T1�−(χ2
21 + χ∗2

12 )]. (11)

Here (ρ0
22 − ρ0

11) is the equilibrium (thermal) polarization of the spin system.
The solution of equations (10) for ρ21(ωp) is

ρ21(ωp) = Dsp

Ds1

Dsp = χp21{[2|χ |2 − (ωp − ωs + iT −1
1 )(ωp − 2ωs + ω0 + i�+)](ρ22 − ρ11)

const

+2χ21ρ12(−ωs)(ωp − 2ωs + ω0 + i�+) + 2i�−χ∗
12ρ12(−ωs)}

Ds1 = 4|χ |2(ωp − ωs + i�+) + 2i�−(χ2
21 + χ∗2

12 ) − �2
−(ωp − ωs + iT −1

1 )

−(ωp − ω0 + i�+)(ωp − ωs + iT −1
1 )(ωp − 2ωs + ω0 + i�+). (12)

For the inhomogeneously broadened line, expressions (10)–(12) are related to a spin packet
with the resonance frequencyω0, so any packet has its own value of ρ21(ωp, ω0) = ρ21(ωp, ω).
Therefore, the absorption coefficient is obtained by integration of (ρ21(ωp, ω)+ρ21(ωp,−ω))/2
over the inhomogeneous contour g(ω) (2).

With the pump field switched off, the spectral picture produced by the field survives for
times of the order of T1. For sufficiently large T1 [14] this permits scanning the inhomogeneous
contour by the probe field in the absence ofH(ωs, t). From the coupled equations forρ12(−ωp)

and ρ21(ωp) it is easy in this case to obtain

Im ρ21(ω2; H(ωs) = 0) = χp(�+ + �−)(ρ11 − ρ22)
const

[(ω2 − ω0)2 + �2
+ − �2−]

(13)

where, as before, (ρ11 − ρ22)
const is given by formulae (11).

For comparison, it is pertinent to consider analogous expressions for ρ21(ωp) in the
framework of the OBEs. They are obtained from (11)–(13) with substitutions ω0 = ω00 + ω,
�+ = �0, �− = 0 there.

3.2. Numerical calculations and discussion

For numerical study of the hole properties through expressions (12) and (13), we need specific
values of parameters that appear in these expressions. It is important here that both the hole-
burning and FID effect are the consequences of one and the same resonance transition in
the sample caused by the same steady-state excitation. Hence, in calculations below one
can exploit the values of parameters known from FID studies. As an example, we apply the
calculations to sample no 1 (quartz with [AlO4]0 centres) of Boscaino and La Bella [2].

Figures 2(a) and (b) depict the evolution of the calculated absorption coefficient α(χ, ωp)

for the probe field with increasing pump field H(ωs, t) in the framework of the MBEs in
the presence of H(ωs, t) (a) and in its absence (b). In each case, the Rabi frequency of the
pump field is varied in the range 0.1 kHz � χ/2π � 200 kHz from top to bottom. Coefficient
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Figure 2. Evolution of the hole in absorption spectrum of a weak probe field in the modified Bloch
model. From the top curve to the bottom one the pump-field Rabi frequency varies in the range
0.1 kHz � χ/2π � 200 kHz; (a) in the presence of the pump field, (b) when the pump field is
switched off.

α(χ, ωp) is normalized to unity forωp = ω00 = ωs (ωs/2π = 5.9 GHz [2]) at vanishing values
of χ . The values of the parameters used in these calculations are those obtained in [2] and [10]
from the FID studies: aω = 3×10−8 cm−3 c−1, a� = 2.76×10−8 cm−3 c−1, r2 = 2×10−9 c2,
T1 = 5 × 10−3 c, T2 = �−1

0 = 7.5 × 10−5 c, n0 = 4 × 1016 cm−3 and σ/2π = 0.25 MHz.
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In all calculations the Rabi frequency of the probe field χp/2π = 0.01 kHz. With increasing
pump fieldH the hole width in figure 2 monotonically increased and the hole height decreased.
The existence of the power-dependent frequency shift and damping in our model introduces an
asymmetry to the hole shape relative the central frequency as is clearly seen in figure 2(a) and
less obviously in figure 2(b) (see curve b in figure 3 below). With increasing field intensity, the
asymmetry increases as well. The curves in analogous figures of the OBE model (not shown
here) are, in general, of symmetrical form (curves c and d in figure 3).
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Figure 3. Hole in the absorption spectrum of a weak probe field for χ/2π = 200 kHz in the MBE
model (b) and in the OBE model (c and d). c is in the presence of the pump field; b and d are when
the pump field is switched off.

Further, the evolution of α(χ, ωp) with χ is more or less clearly seen in figure 2(a) in the
whole range of variation of χ . At the same time, curves for large values of χ in figure 2(b)
and in analogous figures of the OBE model are strongly pressed down to the frequency axis.
So, the frequency dependence of α(χ, ωp) in these cases at χ/2π = 200 kHz is presented in
figure 3 as an example.

From the curves presented in figures 2(a) and (b) and from analogous figures obtained in the
OBE model, we have evaluated the HWHM δν1/2(χ) of the holes for a set of values of χ . Data
are displayed in figure 4 together with the theoretical FID results for the decay rate from figure 9
of [10] shown here for comparison purposes. Recall that here solid squares show the FID rate
in the OBE model, solid circles are in the Redfield limit [2] and open circles represent our MBE
FID data [10]. Experimental FID rate data of Boscaino and La Bella [2] (not shown) practically
coincide with the latter [10]. Let us consider the field dependence of δν1/2 in some detail.

It is seen that the OBE width in the presence of the pump field (open up triangles) at
small χ is somewhat larger than the OBE FID rate (solid squares) and initially follows the
latter with increasing χ . At χ/2π > 10 kHz one observes a crossover from the Bloch to
quasi-Redfield regime, but at much higher level than the ordinary Redfield one (solid circles
in the figure). One can relate this last result to the contribution to the absorption due to the
coherent interference between the pump and probe fields [15].
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Figure 4. Half width at half minimum of the hole in the absorption spectrum of a probe field
versus pump-field Rabi frequency, χ . ‘MBE, pump + probe’ is for a hole in the MBE model in the
presence of the pump field and so on. Theoretical FID rate data [10] are given for comparison.

The OBE width in the absence of the pump field (crosses) follows the preceding result
(OBE width in the presence of the pump field) till the crossover. At this stage, the former
(crosses) is quickly saturated and is not changed further with increasing χ .

The field dependence of the MBE width in the presence of the pump field (solid down
triangles) at small χ is similar to that of the OBE one. With increasing χ , a crossover from the
Bloch to quasi-Redfield regime is observed at much lower level than that for the OBE width
in the presence of the pump field (open up triangles) but at higher level than the crossover for
FID rate in our MBE model (open circles). At very large χ , the MBE width in the presence
of the pump field coincides with that for OBE one. Obviously, the difference between the
MBE width and the MBE FID rate is caused, among other possible factors, mainly again by
the coherent interference [15].

Finally, the MBE width in the absence of the pump field (open diamonds) repeats the
MBE width in the presence of the pump field till the crossover; after the crossover the first
rises much more slowly than the second and even more slowly than the MBE FID rate.

In the light of the above information about the hole width of the absorption coefficient,
it is of some interest to consider the field dependence of the hole width for the polarization
itself. Figure 5 presents the field dependence of the hole half width for the steady-state
polarization in two different approximations: (i) for (n1 − n2)(ω), obtained in the kinetic-
equation approximation by use of formulae (4) and (8) with the damping taken in the OBE
model (T2 and � are constants; solid diamonds) and in the our MBE model (T2 and � are
field-dependent; solid down triangles); (ii) for w(0)(ω) (9), again in the OBE model (crosses)
and in the MBE model (open up triangles). Of the four functional variables, only w(0)(ω):
MBE (open triangles) displays a crossover somewhat similar to that for the MBE FID rate
(open circles).
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Figure 5. Half width at half minimum of the hole in the polarization spectrum versus pump-field
Rabi frequency, χ . ‘(n1 − n2)(ω): T2v(χ) (or T20)’ is for a hole in the polarization spectrum in
the kinetic-equation approximation (equation (8)) with the power-dependent relaxation parameter
T2v(χ) (or with the constant relaxation parameter T2 = T20). ‘w(0)(ω)’ is for a hole in the
polarization spectrum (equation (9)) in the MBE (OBE) model.

4. Conclusion

In a natural development of our work [10] on the modified Bloch equations, here they are
applied to the hole-burning in the absorption spectrum of the two-level systems by steady-state
excitation. We have derived general expressions for hole shapes in the presence of the pump
field and when the latter is switched off. Detailed numerical calculations of the hole shapes
and widths are carried out in the framework of the ordinary and the modified Bloch equations
for a concrete system with known parameters involved in the calculations. Earlier this system
was investigated successfully experimentally [1, 2] and theoretically [10] through transient
nutations and free induction decay. It follows from figures 4 and 5 here and from [1, 2, 10]
that the TN, FID and various hole-burning effects give somewhat different information about
irreversible damping in the system.

Indeed, it was shown experimentally [1] that the TN decay is faster than expected from the
OBE model. As is explained in [10], the TN decay is governed by large and intensity-dependent
�2v(χ, t); the Redfield–Tomita slowing down described by �2u(χ) has a negligible effect.

In the steady-state prepared FID effect, the decay depends on both�2u(χ) and�2v(χ) [10];
however, it is to a great extent determined by the preparation process where parameter �2u(χ)

is of more importance than�2v(χ). As a result, the FID decay rate�(χ) undergoes a crossover
from the Bloch to Redfield regime (open circles in figures 4 and 5) [2, 10].

Finally, our results on the hole width in the MBE model are in qualitative agreement with
the FID data. At the same time, there is important diversity in the intensity dependences of the
FID decay rate and of the hole width, as one can see from figure 4. In this connection, there
is obvious need in experiments on the hole burning in addition to those on the FID effect.
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